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1 Introduction

The World Health Organization reports nearly 190 million individuals have motor impairments [1],
necessitating assistance with activities of daily living (ADLs) such as dressing, bathing, and trans-
ferring. This constant need for help severely impacts their mental health, intensifying feelings of
dependence and shame [2, 3]. Moreover, the acute shortage of caregivers places a heavy demand
on those available [4, 5] and pushes care recipients toward institutionalization, limiting personal
freedom and increasing isolation. As society ages globally, these challenges will only escalate.

Robotic caregivers have the potential to physically assist with ADLs [6, 7] and enable people with
mobility limitations to enhance their independence [8, 9], while also reducing the physical workload
on caregivers. A critical aspect of many daily activities involves the safe manipulation of human
limbs; for instance, dressing requires lifting a limb to slide a sleeve on, bathing involves raising a
limb to wash underneath, and after moving from a bed to a wheelchair, a caregiver must position
the recipient’s limb on the wheelchair’s armrest. However, almost all prior works in these domains
assume that humans without active range of motion are static and inarticulate [10, 11, 12, 13, 14,
15,16, 17, 18, 19, 20].

Limb manipulation for care recipients is extremely challenging due to the diverse mobility limita-
tions they may experience. Some individuals may have restricted passive range of motion in specific
limb areas, commonly seen in post-stroke recovery or joint arthrofibrosis. Human joints also feature
interdependent joint limits, complicating modeling efforts. Conditions like spasticity from cerebral
palsy or stroke can cause variable resistance during movement, while others, such as those with
muscular dystrophy, might experience hypertonia, leading to counteracting joint forces. Although
prior knowledge of muscle tone is possible, it varies significantly even for the same individual due to
mental state and environmental factors. Therefore, a limb manipulation system needs to be person-
alized to each user’s functionality and designed to be closed-loop, allowing it to estimate changes in
muscle tone in real time and adapt to them.

In this paper, we present a closed-loop approach to limb manipulation. We first introduce a math-
ematical formulation of the limb manipulation setting, where a robot rigidly grasps a human limb,
and derive an analytical dynamics model for this interaction. We then instantiate LimbManipula-
tionBench, a simulation benchmark that models manipulation of all four human limbs across two
scenarios (wheelchair and hospital bed), with 100 distinct start—goal configuration pairs per setting.
We validate the correctness of our analytical model by instantiating the same setup in PyBullet and
comparing predicted trajectories against physics-based simulation rollouts, observing exact agree-
ment. Using this analytical model, we show that a naive sampling-based model predictive control
(MPC) approach is prohibitively slow for real-time deployment. To address this limitation, we
propose WOVEN-LM: White-box Validation Interleaved with Fast Neural Predictions for Limb
Manipulation. WOVEN-LM leverages a fast black-box neural dynamics model to efficiently rank
sampled trajectories using batched rollouts, while lazily validating candidate best trajectories against
the white-box analytical model before execution. This design enables real-time performance while
maintaining verifiable safety. Finally, we conduct experiments in one of the LimbManipulation-
Bench environments to demonstrate the feasibility and effectiveness of WOVEN-LM.



Our main contributions are:

* A mathematical formulation for safe and adaptive robotic limb repositioning for individ-
uals with mobility limitations, incorporating human joint dynamics and muscle tone, and
informed by stakeholder input.

e LimbManipulationBench: A simulation benchmark for human limb manipulation cov-
ering all four limbs across two scenarios (wheelchair and hospital bed), with 100 distinct
start—goal configuration pairs per setting.

* WOVEN-LM: A real-time, closed-loop limb manipulation approach that interleaves fast
neural black-box dynamics models with slower white-box analytical models within a model
predictive control framework.

» Experiments in LimbManipulationBench demonstrating the feasibility and effectiveness of
the proposed MPC framework.

2 Related Work

Manipulation of Human Limbs. Using robotic platforms for human-body manipulation presents
significant challenges, primarily due to the critical need for safety. Most prior works assume some
active range of motion in humans and focus on developing exoskeletons [21, 22, 23, 24, 25, 26] to
assist human motion, with a primary goal of minimizing the *'metabolic cost’ of movement to ensure
energy efficiency. In contrast, our work aims to enable a general-purpose robotic manipulator to
reposition human limbs. Within this domain, various works explore gripper design for securely
grasping human forearms [27, 28], which complements our focus on ensuring safe control once a
stable grasp is achieved. Wang et al. [29] explore limb repositioning in a user-supervised setting
using an interface that allows for selecting desired limb movements [30]. However, their approach
relies on predefined movements, whereas our goal is to generalize to various start and goal positions.

More recently, some completely autonomous methods have also been proposed [31, 32]. Chow et
al. [31] propose a model-predictive approach to limb manipulation in simulation, but they assume
the robot embodiment to be two end effectors (modeled as flat plates) that have unrestricted move-
ment in space, and thus do not reason about the mechanics of the robot’s movements. More recently,
Peiros et al. [32] model human manipulation as a constrained motion planning problem, and demon-
strate execution feasibility on a real human. However, none of these works consider severe mobility
limitations such as muscle spasms, muscle tone and limited passive range of motion which demand
closed-loop control with adaptive cost functions.

Articulated Object Manipulation. Some research in articulated object manipulation focuses on
directly learning policies that deduce action sequences from raw sensory input [33, 34]. Different
from these black-box approaches, others propose perception methods for constructing an articula-
tion model, such as joint parameter prediction [35] or dynamic property estimation [36, 37, 38].
With an established model of an object, recent approaches have utilized sampling-based motion
planners [39] or model-predictive control [40] for action generation. However, these techniques
generally assume uniform properties for the articulated object, a presumption that does not hold
in cases like human limb dynamics where variability in muscle tone or spasms might occur. In
our work, we formulate limb repositioning as a model-based control problem to ensure safety. We
assume certain components of the object model, such as the joint-link configuration, are available
apriori. Meanwhile, dynamic aspects like muscle tone require online adaptation to accurately reflect
real-time conditions.

3 Problem Formulation

In this work, we focus on the task of limb manipulation of human limbs. In this section, we first

model the world of our limb manipulation experiments, and then we describe the limb manipulation

task and the characteristics of a robot trajectory we would deem as successfully completing the task.
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3.1 World Modeling

We model the human arm H as a serial chain of three rigid bodies:
the upper arm, the forearm, and the wrist. The upper arm is attached
to a fixed torso through a 3-Degree-of-Freedom (3-DoF) spherical
shoulder joint. The upper arm and forearm are connected by a 1-
DoF revolute elbow joint, and the forearm is connected to the wrist
through a 2-DoF revolute wrist joint, resulting in a total of jg7 = 6
joints and [y = 3 links. The human is seated in a wheelchair W
next to a 7-DoF Franka Emika Panda robot arm R, which has jr =
6 joints and [r = 6 links (we fix one of the joints of the panda to
remove kinematic redundancy).

We account for muscle tone in our model of the human arm. Muscle

tone is t}.le.passivc? .resistance to rpovement in. a joint and is depen— nipulation as a robot rigidly
dent on joint position and velocity. Accordingly, we model it as grasping a human limb at the
torques on each joint, where the torque at joint j is represented as a  wrist or ankle. The target
spring-damper system: limb configuration is shown

7;(6,6) = max(0, —(b; — k;|0 — m;|) — ¢;6) in green.

where k; is the spring constant, m; is the spring center, b; is the maximum torque of the muscle
tone being modeled, and c; is the damping coefficient, all of which are specified for each joint j.
Muscle tone may vary over long periods of time, so we start with an initial estimation and converge
on a more accurate model online. Lastly, we assume that the user’s muscle tone does not change
during the short duration of limb manipulation.

Figure 1: We model limb ma-

3.2 Limb Manipulation Task

We define the limb manipulation task as finding a feasible trajectory ¢°~7 that moves a human limb
from an initial configuration ql(L(I)) to a target configuration qg) at time 7. At any time ¢ € [0,7],
the trajectory state ((V) = (R(™), H®)) consists of the robot state R®) and the human state H*).
Specifically, R(*) includes joint torques Tg ), joint configuration qg), joint velocity qg), and joint
acceleration ('jg). H® consists of an analogous tuple (Tg), qg), q'§?, ij(t)).

For a trajectory to be feasible, (") must satisfy the following kinematic and dynamic constraints:

Kinematic Constraints: We require that a trajectory ¢ describes no collisions, does not violate joint
limits for either the human arm or robot.

Collisions: The robot and human should not collide with each other, themselves (no self-collisions),
or objects in the environment.

Joint Limits: At any time ¢ € [0, 7], we enforce human joint limits such that qg) € Qp, where

Qpr C RI7 denotes all valid, or physically attainable, human limb configurations.

Dynamic Constraints: To ensure safety and comfort, we impose torque constraints on the human
limb. We limit the torque applied by the robot such that 7, < 7. .

We consider a vector 73, of torques on each human joint, and decompose it into torques caused by
muscle tone, gravity, and the robot:

Th =Tt + Tg + Tr.

A trajectory is considered feasible if the cumulative torque magnitude on the human limb remains
below a safety threshold 73, at all times:

safe
vt € [0,T].

Among all feasible trajectories, we define the optimal trajectory as the one that minimizes the time
to reach the goal configuration:

|7h| < T

safe)

min ;7.
COA}T



4 Method

We propose WOVEN-LM: White-box Validation Interleaved with Fast Neural Predictions for Limb
Manipulation. Our method consists of four core components:

(1) deriving an analytical dynamics model for limb manipulation,

(2) learning a neural dynamics model of coupled human-robot motion,

(3) interleaving fast neural predictions with slow white-box verification for trajectory planning, and
(4) (future work) actively refining a user-specific muscle-tone model through safe exploration.

4.1 Analytical Dynamics Model for Limb Manipulation

Given the robot joint positions and velocities (g, ¢,), the human joint positions and velocities
(qn, qn), and the applied robot joint torques 7,, we model the limb manipulation setup as a cou-
pled human-robot system under a rigid grasp.

We begin with the Euler-Lagrange dynamics of the robot arm, which relate the robot joint accelera-
tions ¢, to the applied torques and interaction forces:

Mr(Qr)dr + Cr(Qrv QT)QT + gr(‘]r) + Trext = Tr (1)

Here, M,.(-) denotes the robot mass (inertia) matrix, C,.(-, -) captures Coriolis effects, g, () repre-
sents gravitational torques, and T, ¢« denotes external joint torques arising from contact.

Next, we model the human arm dynamics under the assumption that the human arm is not actively
actuated (no muscle tone) and that all joint torques arise from interaction forces at the grasp:

My, (qn)Gn + Crlan, 4n)dn + 8n(an) = Thext )

Here, M}, (-), Ci(+, ), and g, (+) denote the corresponding mass, Coriolis, and gravity terms for the
human arm, and 7}, o« represents external torques induced by contact.

The coupling between the human and robot arms is expressed through the grasp constraint, which
maps the contact wrench at the grasp point to joint-space torques on each arm:

Th,ext = Jh(Qh)TFm Trext = 7J7"(q7")TFC 3)

Here, J5,(-) and J.(-) are the human and robot end-effector Jacobians, respectively, and F. denotes
the contact wrench.

Finally, we impose a rigid grasp assumption, which enforces equality of the human and robot end-
effector velocities at the contact point:

Jh(Qh) qh = J’I‘(q’l") QT (4)

Together, equations (1)-(4) define a coupled dynamical system that can be solved to recover
(qn, §r, F.) given (¢n, dn, qr, Gr, Tr); for examples we can solve:

s (1T (3T \#* # #
iy = (30 (30) ™ (Mi + Ciy) A)IF o) + Moy + Co At)
T T \# -1 # .
x (Tr(t) 30 Tnw) ((Mh(t) AT+ Cr) I 1y I () dr(e-1)
— M,y At o) + gh(t)) = Crp) Grig—1) — g'r(t)) )]

However, computing this solution is too slow for use as a dynamics model within a model-predictive
control framework, motivating the use of a learned, faster neural dynamics model.

4.2 Learning a Neural Dynamics Model

We train a neural regressor fy to predict coupled human-robot joint accelerations,

((jh7 Qr) = fQ(qhaq}HqTaQT‘vTTwQS)v



where ¢ optionally encodes limb-specific properties such as link lengths, masses, and inertias. The
model is trained entirely on analytically generated data that captures the coupled human-robot dy-
namics under rigid grasp constraints.

To generate training data, we synthesize state—torque—acceleration tuples using the analytical dy-
namics model. We first sample human joint positions and velocities, then solve for compatible robot
joint configurations under the grasp constraint. Specifically, we compute robot joint positions via
inverse kinematics and robot joint velocities using the grasp-induced velocity relationship. Samples
that violate robot joint limits are discarded and resampled. We then sample a random robot joint
torque and compute the corresponding joint accelerations using the analytical forward dynamics
model. The data generation procedure is summarized below:
(qn, 4n) < sample human joint positions and velocities

qr < 1K(qn)

Gr < I (Indn)

if ¢, violates joint limits: resample
T, < sample random robot torque

(dra Qh) — AnalyticalDynamiCSMOdel(q’r‘7 q.’m qh, q.h7 TT)
dataset < ([TT7 qr, QN qh, qh]a [dra qh])

We generate a synthetic dataset using the analytical model and train a multi-layer perceptron via
supervised regression. Although the learned model is computationally efficient and supports batched
inference, it offers no formal guarantees on prediction accuracy, motivating the need for verification.

4.3 Learning—Verification Synergy

At execution time, fy is embedded within a sampling-based model-predictive control (MPC) frame-
work. The planner samples candidate torque trajectories, rolls them out using fy to obtain predicted
future states, and ranks them via a cost function. Our white-box analytical dynamics model then
acts as a verifier and rejects trajectories that violate analytic safety constraints (joint limits or torque
thresholds). If the top candidate is infeasible, the next-best is tested. This interleaved strategy en-
ables fast, data-driven planning while preserving verifiability and safety.

4.4 Future Work: Active Learning for Muscle-Tone Modeling

Muscle tone governs the counter-torques 7 counter €Xerted by the human limb in response to robot-
applied torques. Because these torques vary across individuals and can change over time, we in-
troduce a separate estimator g that predicts the expected counter-torque given the current limb
configuration and motion history. The predicted 7, counter = 945 (qh, Gh., Gr, Gr) is then provided as an
input to the neural dynamics model fy during planning.

We frame the online refinement of g, as an active learning problem integrated within the MPC
loop. In addition to standard task and safety objectives, the MPC cost includes an auxiliary term that
encourages trajectories expected to reduce uncertainty in the torque estimation, guiding the robot
to collect data that is both informative and safe. After each control cycle, the true counter-torques
measured from interaction are used to update g, via a supervised loss. This design enables the robot
to continuously personalize its muscle-tone model for safe, adaptive control.

Due to time constraints, we leave this component for future work.
5 Experiments

5.1 Experimental Setup: LimbManipulationBench

To evaluate limb manipulation across diverse scenarios, we propose LimbManipulationBench, a
PyBullet-based simulation benchmark consisting of eight environments. Each environment features



Figure 2: LimbManipulationBench. We propose a PyBullet-based benchmark with eight environ-
ments where a Franka Emika Panda grasps a human avatar’s limb across four limbs and two settings:
wheelchair and hospital bed. We instantiate 100 start-goal pairs in each of the eight environments.

a Franka Emika Panda robot grasping a human avatar’s limb in one of two settings: a wheelchair
or a hospital bed, and across all four human limbs. Figure 2 illustrates representative environments
from the benchmark. For each environment, we evaluate 100 distinct start—goal configurations of the
human arm. Unless otherwise stated, the remainder of this section focuses on the wheelchair-left-
arm env, in which the human is seated in a wheelchair and the robot grasps the left arm (Figure 1).

5.2 Validating our Analytical Dynamics Model

To validate the correctness of our analytical dynamics model, we apply random joint torques to the
robot arm for 2,000 timesteps in the wheelchair—left-arm environment and compare the resulting
robot and human joint positions and velocities against those obtained from PyBullet. Torques are
sampled uniformly within the robot’s actuation limits. The analytical model is evaluated in an open-
loop manner: it is initialized with the PyBullet state at timestep zero and subsequently rolled out
without feedback, allowing errors to accumulate over time. As shown in Figure 3, the predicted robot
and human joint positions and velocities from the analytical model match the PyBullet simulation
exactly over all 2,000 timesteps, validating the correctness of our derivation.

5.3 Training a Neural Dynamics Model

We collect a dataset of 20 million datapoints, with candidate human joint configurations sampled
within +30° for each joint angle of the nominal arm pose shown in Figure 1. Data generation
required approximately 10 hours using 64 parallel worker threads on a 64-core CPU cluster node.

We train a 4-layer multilayer perceptron with approximately 8.4 million parameters, using ReLU
activations and linear input normalization. The network takes 30-dimensional inputs (robot joint
positions, velocities, torques, and human joint positions and velocities) and outputs 12-dimensional

Robot joint Pos

Human joint Velocities 0

Robot oint Velocities 1

Figure 3: We validate our analytical dynamics model (orange) by comparing it to PyBullet rollouts
(blue) from the same initial state over 2000 timesteps. Joint positions and velocities for both the
robot and human match exactly across all joints (first two joints starting from base shown).
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Figure 4: We train a four-layer MLP neural dynamics model on a synthetic dataset of 20M sam-
ples. Although the mean (left) and median (center) errors between predicted and ground-truth hu-
man/robot accelerations remain high, they are dominated by hard-to-learn regions near kinematic
singularities, as reflected by the non-decreasing maximum error (right). In practice, we show that
the model is sufficient across diverse start-goal configurations. Link to WandB Run.

joint accelerations (6 human and 6 robot). Training is performed using supervised regression with
mean-squared error loss. Because both inputs and outputs are low dimensional, the full dataset is
stored on the GPU, enabling large batch sizes. After hyperparameter sweeps, we select a learning
rate of 3 x 10~%, batch size 16,384, and 1,000 training epochs, with hidden layer sizes of 1024—
2048-2048-1024. Training takes 8.6 hours on an NVIDIA RTX 6000 Ada Generation GPU.

Figure 4 shows the training results from our best Weights & Biases run. The final mean prediction
error (on a held-out set) is approximately 0.4 radians (24.1 degrees) / s2, with a median error of
0.26 radians (14.9 degrees) / s%. While these errors appear large, we observe that the maximum
error is dominated by rare but extreme outliers (up to 534 radians / s?), which the network fails to
approximate accurately. We hypothesize that these outliers arise near kinematic singularities. In
such regions, small changes in joint configuration can induce large changes in the quantities used to
compute accelerations, due to the ill-conditioning of the robot Jacobian as its smallest singular value
approaches zero. As a result, the target accelerations exhibit extremely large magnitudes and high
sensitivity in a small subset of the dataset, disproportionately inflating the maximum error and, to a
lesser extent, the mean error. To validate this hypothesis, we train a separate network to predict the
6 x 6 robot Jacobian given robot joint positions alone. As shown in this separate Weights & Biases
run, this model exhibits similar behavior: while the mean and median errors decrease substantially
during training, the maximum error remains large due to near-singular configurations. These results
suggest that the reported mean and median errors are inflated by near-singularity samples, which
make even a simple robot jacobian very hard to learn.

In practice, the model performs well away from singularities, as validated in later experiments and
illustrated by this open-loop rollout of the trained neural dynamics over 500 timesteps. The human
and robot end effectors initially move together before gradually diverging as errors accumulate.

5.4 WOVEN-LM vs MPC with Analytical Dynamics Model

We compare WOVEN-LM against a baseline MPC approach that uses the analytical dynamics
model, in order to evaluate real-time feasibility. Both methods are evaluated on the task shown
in Figure 1 and use the same MPC formulation, with cost terms for goal reaching and human joint
limit violations. The planning horizon is 25 timesteps, with 50 trajectory samples per planning step.

Analytical dynamics MPC. Using the analytical dynamics model within MPC results in a total
of 658 execution timesteps, with an average planning time of 1.97 seconds per timestep and a total
execution time of 21.6 minutes. Due to this computational cost, the analytical dynamics MPC cannot
be deployed on a real robot.

WOVEN-LM. Replacing the analytical dynamics model with WOVEN-LM yields 656 execution
timesteps under the same MPC configuration. The average planning time per timestep is reduced


https://wandb.ai/caregivingrobotics/test_learned/runs/ef51b31b?nw=nwuserrkjenamani
https://wandb.ai/caregivingrobotics/test_learned/runs/ef51b31b?nw=nwuserrkjenamani
https://wandb.ai/caregivingrobotics/test_learned/runs/hirjcg80
https://wandb.ai/caregivingrobotics/test_learned/runs/hirjcg80
https://drive.google.com/file/d/1qcqj0lEHt6C4HtqA03Y2yjd6bau3EB-2/view?usp=sharing

to 0.103 seconds, enabling real-time performance. This corresponds to a 19x speedup over the
analytical dynamics baseline. For verification, we use a tolerance of 0.1 radians (= 6°), which is
substantially smaller than the median and mean prediction errors observed during training. This
reduction in planning time enables real-time execution, signaling the practicality of WOVEN-LM
for deployment on physical robots.

5.5 WOVEN-LM on LimbManipulationBench

We evaluate WOVEN-LM on the 100 wheelchair—left-arm tasks in LimbManipulationBench. For
7 tasks, inverse kinematics for the initial human arm configuration is infeasible, leaving 93 valid
problems. Among these, WOVEN-LM successfully solves 71 tasks, corresponding to a success rate
of 76.3%. Videos of all 71 successful trials are available here.

The remaining 22 failures occur when the robot—human system enters states in which all trajectories
proposed by the neural dynamics model fail the verification step, resulting in no feasible trajectory.
In future work, such cases could be addressed by falling back to the analytical dynamics model to
escape these locally challenging regions where the learned model performs poorly.

6 Conclusion

In this paper, we presented a closed-loop framework for safe manipulation of human limbs. By
deriving an exact analytical dynamics model and combining it with a fast learned neural dynamics
predictor within the WOVEN-LM framework, we demonstrated that it is possible to achieve real-
time model predictive control while retaining verifiable safety guarantees. Simulation experiments
in LimbManipulationBench show that WOVEN-LM enables closed-loop control across diverse limb
configurations and significantly outperforms MPC which solely uses an analytical dynamics in terms
of real-time feasibility. Looking forward, an important direction is to tackle user-specific muscle
tone, which varies across individuals and over time and can substantially affect interaction forces
during limb manipulation. Finally, deploying WOVEN-LM on a physical robot interacting with
human participants remains a key next step to validate safety, performance, and practicality in real-
world caregiving scenarios.


https://drive.google.com/drive/folders/1WFk-KY7OJYQIDauonoPWyiJF3JYcJEUL?usp=sharing
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